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Review

Although the toxicology and environmental 
epidemiology of methyl mercury have been 
recently outlined [Clarkson and Magos 
2006; Grandjean et al. 2005; United Nations 
Environmental Programme (UNEP) 2002], 
the sequence of scientific discoveries and con-
sensus building reveals important caveats and 
complications that may have a wider relevance 
to environmental health research.

Metallic mercury and its inorganic 
salts have been known since antiquity, but 
organic mercury compounds with a cova-
lent bond between the mercuric ion and the 
organic radi cal were first described in the 
19th century. The toxic actions became read-
ily apparent in laboratory accidents, and the 
description of the clinical syndrome noted 
the “unique character of their symptoms, 
which do not resemble those produced by 
any known disease” (Edwards 1865). The 
clini cal picture included sensory disturbance 
of the lower legs, lower arms, and face; visual 
field constriction (“tunnel vision”); deafness, 
ataxia; and dysarthria. This seminal publica-
tion became widely known at first but was 
later forgotten. Major events in the sub-
sequent environmental history of methyl-
mercury are listed in Table 1.

In a commentary on the regulatory delays 
in dealing with methyl mercury poisoning in 

Minamata, Japan, Jun Ui [as quoted by D’Itri 
and D’Itri (1978)] wrote: 

It might be a coincidence, but a strange, paral-
lel relationship was observed between the actual 
symptoms of Minamata Disease and the reactions 
of these formal organizations. A constriction of the 
visual field was common among all organizations. 
Ataxia, a loss of coordination between various parts 
of the body, was often exhibited in contradictions 
between the measures taken by various parts of the 
government. There was also a loss of sensation as 
the appeal of the victims went unheard and there 
was little effort to grasp the situation as a whole. 
Many organizations also reacted with spasmic con-
vulsions when they faced the problem. This was 
followed by mental retardation and forgetfulness.

In the present review we consider the 
extent to which such manifestations also 
affected the performing, reporting, and rec-
ognition of environmental methyl mercury 
research.

Early Evidence of Human 
Toxicity
Despite Edwards’s alarming report on fatal 
methyl mercury poisonings (Edwards 1865), 
this substance was applied in the search for a 
cure for syphilis. Not surprisingly, the experi-
mental treatments resulted in severe side 
effects in the patients (Hepp 1887); there-
fore, this approach was not further pursued. 

However, the microbial toxicity was used in 
applications of methyl mercury as a fungi-
cide, which became important commercially 
starting around 1914, initially with few pub-
lished records of adverse effects (Franke and 
Lundgren 1956; Hunter and Russell 1954). 
This application of mercury became widely 
used in developing countries as part of the 
“green revolution,” without any monitoring of 
dissemination of mercury in the environment 
or of associated adverse effects.

With additional clinical cases being 
reported, the unique combination of signs 
and symptoms became established as a key 
to the diagnosis of fully developed methyl-
mercury poisoning. A postmortem examina-
tion of a deceased worker showed damage to 
the cerebral and cerebellar cortices that cor-
responded to the patient’s neurological signs 
(Hunter and Russell 1954).

Expanded use of mercury fungicides and 
improper labeling paved the way for a series 
of food poisoning incidents during famines in 
several countries, where treated seed grain was 
mistakenly used for bread making. The first 
cases were reported in Iraq in 1955–1956 and 
1959–1960 (Jalili and Abbasi 1961), then in 
Pakistan in 1961 (Haq 1963), in Guatemala 
in 1965 (Ordonez et al. 1966), and again in 
Iraq in 1970–1971 (Bakir et al. 1973). Both 
methyl mercury and related ethyl mercury com-
pounds had been used for seed dressing. Large 
numbers of poisonings and deaths occurred, 
but the emergency circumstances during a 
famine made data collection difficult, with 
limited opportunities to record the extent of 
the exposures.

The most detailed studies of 93 poisoned 
adults in Iraq identified facial paresthesia as the 
earliest clinical sign of poisoning, with a clear 
dose dependence (Bakir et al. 1973). Official 
records acknowledged that 6,530 patients 
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were hospitalized and 459 died (Bakir et al. 
1973), but the amount of treated grain used 
(100,000 tons) would suggest that many more 
could have been poisoned, although circum-
stances did not allow follow-up of a represen-
tative group of subjects. The first author of 
the 1973 Science report (Bakir et al. 1973), 
Farhan Bakir, was later recognized as Saddam 
Hussein’s personal physician, now in exile 
along with at least one other Iraqi coauthor 
(Giles 2003; Hightower 2009). Although any 
error or bias in the research reports is diffi-
cult to determine today, one can assume that 
methyl mercury toxicity was unlikely to have 
been exaggerated.

Bakir et al.’s (1973) dose–response data 
appeared to confirm a previous risk assess-
ment of methyl mercury, as determined 
by the Joint Expert Committee on Food 
Additives (JECFA) under the World Health 
Organization and the Food and Agriculture 
Organization of the United Nations (JECFA 
1978). These conclusions formed the basis for 
risk assessment for the next 25 years (JECFA 
2003).

Unexpected Exposure 
Pathways
On 1 May 1956, Hajime Hosokawa and 
Kaneki Noda submitted a report to the 
Minamata Health Centre in Japan on a myste-
rious series of four cases of the same, unknown 
neurological disease (Social Scientific Study 
Group on Minamata Disease 1999). A few 
weeks later, a committee of medical experts 
found an additional 30 patients along the 
shores of Minamata Bay, among whom 

the first cases apparently developed as early 
as 1953.

A genetic cause of the disease was soon 
ruled out because it occurred in unrelated 
subjects (Nagano et al. 1957). However, the 
pattern of disease occurrence resembled that 
of an infectious agent. In one severe instance, 
8 of 11 family members were afflicted, and 
the remaining 3 subsequently also appealed 
for recognition. Most of the patients were 
fisher men and their families who resided near 
the coast. Additionally, a mysterious danc-
ing disease had recently emerged in fisher-
men’s cats (Social Scientific Study Group on 
Minamata Disease 1999). The experts sus-
pected that a toxic metal had contaminated 
the seafood. On 4 November 1956, the day 
after the release of this report, the prefec-
tural authorities wisely announced a warn-
ing against eating seafood from Minamata 
Bay. However, a ban against eating seafood 
from Minamata Bay was not approved by 
the Ministry of Health and Welfare in Tokyo 
because of uncertainty regarding involvement 
of seafood in general in causing the disease 
(Harada 2004; Social Scientific Study Group 
on Minamata Disease 1999).

During the next 2 years, several stud-
ies failed to pinpoint the exact cause of the 
seafood-associated disease, and the avail-
able information caused some confusion. 
For example, the Japan Chemical Industry 
Association claimed that the disease could be 
due to leakage of explosives dumped during 
World War II (Mishima 1992). Manganese 
was suspected for a while, as were selenium, 
thallium, and copper. A summary of these 

findings, along with personal observations, 
was published in Lancet (McAlpine and Araki 
1958). These authors mentioned that metal 
poisoning was suspected and briefly reviewed 
methyl mercury (citing the report by Hunter 
and Russell 1954) along with other neuro-
toxicants. The first international report on 
methyl mercury as a likely cause of Minamata 
disease was published soon there after (Kurland 
et al. 1960). The source of methyl mercury was 
later found to be an acetaldehyde plant owned 
by the Chisso Company, which used mercury 
as a catalyst.

In hindsight, it seems strange that methyl-
mercury was not recognized right away as 
the most likely cause of Minamata disease, 
given the descriptions by Edwards (1865) 
and Hunter et al. (1940) of its unique clinical 
features. The similarity in clinical symptoms 
was in fact noted (Tokuomi et al. 1960), as 
were the pathology findings from autopsies of 
deceased victims (Matsumoto 1961; Takeuchi 
et al. 1959, 1960). However, thin-layer chro-
matography identification of methyl mercury 
was not successful until 1962, when the sub-
stance was identified in sludge from the acet-
aldehyde plant and the bottom sediment of 
the effluent channel (Irukayama et al. 1962). 
Elevated methyl mercury concentrations were 
subsequently documented in seafood and in 
tissues of deceased patients. It seemed highly 
unlikely that this exotic substance caused the 
contamination of the seafood from Minamata 
Bay and surrounding waters: How could an 
expensive mercury fungicide be the cause of 
the poisonings? Methyl mercury was eventually 
acknowledged by governmental authorities in 
1968 to be the cause of Minamata disease 
(Social Scientific Study Group on Minamata 
Disease 1999).

In the meantime, new cases of Minamata 
disease had been discovered in Niigata, 
Japan, in 1965 on the main island of Honshu 
(Tsubaki et al. 1969, 1977); methyl mercury 
releases originated from the same production 
processes using mercury as a cata lyst. Now 
the researchers were better prepared, and 
analytical methods were readily available to 
apply to environmental samples, tissues, and 
hair. Because the Niigata cases in general were 
milder, the studies provided useful insights 
into less pronounced cases of Minamata dis-
ease. Further studies during the 1970s and 
1980s identified a variety of delayed symp-
toms in people exposed to methyl mercury 
(Kinjo et al. 1993), and the adverse effects of 
methyl mercury pollution were documented 
in many communities around the Shiranui 
Sea, some of them a substantial distance from 
Minamata (Ninomiya et al. 1995; Yorifuji 
et al. 2008).

Decades earlier, it had been discovered 
that methyl mercury could be spontaneously 
formed from inorganic mercury employed in 

Table 1. Important early warnings about and recognition of methylmercury (MeHg) toxicity.
Year(s) Event References
1865 First published record of fatal occupational MeHg poisoning Edwards 1865
1887 First experimental studies on MeHg toxicity Hepp 1887
1930 Report on organic mercury poisoning in acetaldehyde production workers Koelsch 1937
1940–1954 Poisoning cases in workers at MeHg fungicide production plants Franke and Lundgren 1956; 

Hunter and Russell 1954
1952 First report on developmental MeHg neurotoxicity in two infants Engleson and Herner 1952
1956 Discovery of a seafood-related disease of unknown origin in Minamata, Japan SSSGMD 1999
1959 Studies on MeHg toxicity in cats suppressed by the polluting company Eto et al. 2001
1967 Demonstration of mercury methylation in sediments Jensen and Jernelov 1967
1968 Official acknowledgment of MeHg as cause of Minamata disease SSSGMD 1999
1955–1972 Occurrence of poisoning epidemics from use of MeHg-treated seed grain 

for cooking, and decline in exposed wildlife populations
Bakir et al. 1973; Borg 
1969

1972 Experimental study of delayed effects due to developmental neurotoxicity Spyker et al. 1972
1972 JECFA exposure limit of 3.3 µg/kg per week based on toxicity in adults JECFA 1972
1973 Report on dose–response relationship in adults from Iraqi data Bakir et al. 1973
1986 First epidemiology report on adverse effects in children related to maternal 

fish intake during pregnancy in New Zealand
Kjellström et al. 1986

1997 Confirmation from prospective study in the Faroe Islands on adverse effects 
in children from MeHg in maternal seafood intake during pregnancy

Grandjean et al. 1997

1998 White House workshop of 30 scientists identifies uncertainties in evidence NTP 1998
2000 NRC supports exposure limit of 0.1 µg/kg per day NRC 2000
2003 Updated JECFA exposure limit of 1.6 µg/kg per week JEFCA 2003
2004 European Union expert committee recommends that exposures be minimized EFSA 2004
2005 European Union decides on a ban on mercury exports European Union 2007
2009 International agreement on controlling mercury pollution UNEP 2009

Abbreviations: EFSA, European Food Safety Authority; JECFA, Joint Expert Committee on Food Additives; NRC, National 
Research Council; NTP, National Toxicology Program; SSSGMD, Social Scientific Study Group on Minamata Disease.
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acetaldehyde production (Vogt and Nieuwland 
1921; Zangger 1930), and in fact, cases of 
methyl mercury poisoning occurred in German 
acetaldehyde production workers (Koelsch 
1937). The two factories in Minamata and 
Niigata had copied the German production 
process, but the toxicity reports went unno-
ticed for > 50 years (Ishihara 2002).

Diagnostic Difficulties
Despite the characteristic features of severe 
methyl mercury poisoning, linkage to a causa-
tive exposure could be complicated by the 
latency period of several weeks to months 
between the exposure and the development 
of clinical symptoms (Edwards 1865; Franke 
and Lundgren 1956). In addition, early symp-
toms, as seen in farmers and factory work-
ers, were hard to recognize. In the words of 
Ahlmark (1948), “Such symptoms [of methyl-
mercury poisoning] scarcely differ from those 
generally found in neurasthenics when they 
think that they have been exposed to toxic 
risks.” In fact, one worker was thought to 
suffer from hysteria and underwent electro-
shock treatment (which did not help) before 
being diagnosed with methyl mercury poison-
ing (Herner 1945).

In Japan in 1977, the Environment 
Agency issued a notice on certification of 
patients, and the criteria for Minamata disease 
diagnosis became the object of much discus-
sion and legal proceedings (Harada 2004). The 
legal requirement to identify bona fide cases of 
Minamata disease and to separate this diag-
nosis from other abnormalities unrelated to 
such exposure required considerable medical 
attention and resources. Meanwhile, increasing 
numbers of likely victims were being discov-
ered, in part due to the continued pollution 
and environ mental dissemination. A court 
decision in 2004 provided recognition and 
compensation to many additional Minamata 
disease patients (most of whom had died by 
that time) (Ushijima et al 2010). However, 
many thousands were thought to be affected, 
although not to a degree justifying compensa-
tion based on the existing case criteria. Only 
in 2009 was a law enacted to provide com-
pensation to most of the remaining groups of 
victims (Martin 2009).

Part of the inertia was probably due to 
previous embarrassments caused by hav-
ing to retract mistaken conclusions of ear-
lier suspected causes, in combination with 
legal and political rigidity. The resistance 
and lack of cooperation from Chisso were 
also an important factor. Most embarrass-
ing, toxicity experi ments were carried out in 
the late 1950s by Chisso’s company doctor, 
Hajime Hosokawa. Ten cats were fed stan-
dard cat food mixed with effluent from the 
acetaldehyde plant, where mercury was used 
as a catalyst (Eto et al. 2001). At that time, 

the researchers were not aware that the efflu-
ent contained methyl mercury. The exposed 
cats developed symptoms similar to those 
seen in cats that had eaten fish from the bay. 
Only in 1969 did Hosokawa reveal that the 
results existed and had been suppressed by 
his employer. A detailed scientific account 
was eventually published after a 40-year delay 
(Eto et al. 2001).

Even at a hearing in 1971, a represen-
tative from Chisso, Keiji Higashidaira, still 
claimed that Minamata disease was due to 
rotten fish and not mercury contamination 
from the factory (Mishima 1992). Thus, the 
company continued to claim innocence and 
lack of proof for many years. Only after legal 
defeat did Chisso formally agree to pay com-
pensation to the victims.

Similar problems occurred elsewhere. 
Among the best documented cases is the seri-
ous mercury contamination of the Kenora 
area in Ontario, Canada. Beginning in 
1962, a chloralkali plant released mercury 
waste into a local lake, and pulp wastes were 
released from a nearby paper production 
plant that used phenyl mercury in slimi cides. 
Contamination of freshwater fish affected the 
livelihood and health of bands of Ojibway 
people and sportsfishers. But the challenge of 
“show me someone who had died of mercury 
poisoning” became an oxy moron, because 
autopsies were not conducted on the exposed 
Ojibway, and their blood mercury concentra-
tions were kept secret (D’Itri and D’Itri 1978; 
Wheatley et al. 1979).

In the United States, Korns (1972) 
reported the case of a housewife who had 
eaten swordfish daily trying to lose weight; 
she had developed blurred vision, fatigue, 
ataxia, and headaches. She was under psy-
chiatric treatment for psycho somatic disease 
until methyl mercury toxicity was recog nized. 
More cases among dieters emerged (Genuis 
2009), and a series of affected patients among 
avid sushi eaters was identified by a practicing 
specialist in California (Hightower 2009).

Developmental Susceptibility
A new era in methyl mercury toxicology was 
heralded by the first description of congenital 
methyl mercury poisoning in 1952 (Engleson 
and Herner 1952). A Swedish family had inad-
vertently used flour made from methyl mercury- 
treated seed grain. One infant had eaten por-
ridge made with this flour since weaning at 
9 months of age. The child’s pregnant mother 
had also eaten the porridge without suffering 
any adverse effects herself. After delivery of 
the second child, both children were found 
to be mentally retarded and severely deficient 
in motor development; their condition was 
virtually unchanged 2 years later. Although 
the doses received by the mother and her two 
children are not known (Engleson and Herner 

1952), this case report suggested that the ner-
vous system was much more vulnerable to 
methyl mercury toxicity during early develop-
ment, including the fetal stage.

In Minamata, a series of infants poisoned 
in their mother’s womb was recorded by 
the first investigative team from Kumamoto 
University (Kitamura et al. 1957). The 
researchers also noted that many children born 
from 1955 onward suffered from develop-
mental disturbances that suggested diffuse 
cerebral dysfunction (Harada 2004). Children 
< 9 years of age appeared to be particularly 
numerous among the patients. In many 
cases, the pregnant woman appeared com-
pletely healthy, despite carrying a baby who 
suffered congenital methyl mercury poisoning 
(Takeuchi et al. 1964).

Most of these children were not imme-
diately diagnosed because the spastic paresis 
syndrome was less distinctive than the clinical 
picture of the adult poisoning cases. The early 
signs of congenital poisoning (i.e., mental 
retardation, movement problems, seizures, 
primitive reflexes, and speech difficulty) could 
be mistaken for some other disease and over-
looked, especially in mild cases.

In Japan, parents often keep a piece of the 
umbilical cord from their children as a tradi-
tional token of luck. During the 1960s, speci-
mens were collected by Masazumi Harada, 
who showed that children with recog nized 
congenital Minamata disease had the highest 
concentrations of methyl mercury in preserved 
umbilical cords, whereas those with “ordi-
nary” mental retardation had levels between 
those of the poisoned subjects and those of 
the controls (Akagi et al. 1998; Harada et al. 
1977; Nishigaki and Harada 1975).

Neuropathology data were also being com-
piled because detailed autopsies were followed 
by histological, histochemical, and chemical 
examinations. It became clear that the adult 
disease was associated with localized lesions 
in certain brain areas (e.g., the calcarine, post-
central, pre central, and temporal transverse 
cortices and deep structures of the cerebellar 
hemispheres of the brain), along with lesions 
of peripheral sensory nerve fibers (Takeuchi 
and Eto 1999). Methyl mercury poisoning in 
children showed more widely distributed dam-
age on the brain. However, infants and chil-
dren who had been poisoned prenatally (from 
the mother’s diet) showed a diffuse pattern of 
damage with disruption to normal structures 
(Takeuchi 1968; Takeuchi and Eto 1999).

These findings strongly supported the 
notion that early developmental exposure 
causes a much more serious disease in chil-
dren than in individuals exposed as adults. As 
stated by Harada (1977), 

It may thus be supposed that the fetal brain is 
more fragile and susceptible to toxic agents, since it 
is immature and still undergoing development. . . . 
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Clearly, prevention of Minamata disease, especially 
congenital cases, is a first requirement, and the 
greatest care should be taken by pregnant women 
since the fetus has a higher sensitivity.

After the main poisoning incident in Iraq 
in 1970–1971, the pediatrician Laman Amin-
Zaki teamed up with colleagues from the 
United States to study the effects of methyl-
mercury exposure in 49 children. Although 
the exposed children were examined by basic 
neurological tests at various ages, the develop-
ment of language and motor function of 
children exposed prenatally was found to be 
delayed (Amin-Zaki et al. 1978). In a later 
report Marsh et al. (1987) described the use 
of advanced analytical technology to deter-
mine mercury concentration profiles in single 
hair strands, so that the researchers could get 
a calendar record of methyl mercury exposure 
during the entire duration of the pregnancy. 
These dose measures suggested that a greater 
vulnerability of the developing nervous system 
would result in adverse effects at an exposure 
that was one-fifth of the doses causing adverse 
effects in adults.

“The occurrence of prenatal intoxica-
tion also calls for caution” was the scientific 
consensus in 1972 (JECFA 1972). Later on, 
JECFA also recognized that “clinical data from 
Japan indicate that the fetus is more sensitive 
than the mother,” although the committee 
refrained from recommending any special pro-
tection (JECFA 1978). The risk assessment 
was therefore based on toxicity in adults and 
remained that way for the next 25 years.

Experimental Evidence
In the early 1900s, inorganic chemistry pro-
vided a framework for interpreting the very 
different properties of methyl mercury and 
inorganic mercury (Grimm 1925; Jensen 
1937), although it was not appreciated by 
toxicologists until much later. The first fatal 
cases of methyl mercury poisoning in humans 
inspired experimental studies to examine its 
toxic effects in rats, dogs, cats, rabbits, and 
one monkey. The common feature was an 
ascending paralysis accompanied by move-
ment difficulties, tremors, blindness, dis-
turbance in hearing, and irascibility in the 
animals (Hepp 1887; Hunter and Russell 
1954). These results were in excellent accor-
dance with the clinical appearance of human 
poisoning cases. Hunter and Russell (1954) 
also demonstrated lesions in relevant brain 
cells and regions as the likely basis of the clin-
ical manifestations. A crucial observation was 
that cats given methyl mercury and related 
organic mercury compounds showed the same 
symptoms as cats that had succumbed to eat-
ing seafood from Minamata Bay (Eto et al. 
2001; Sebe et al. 1961; Takeuchi et al. 1960). 
Although entirely different from those caused 
by mercury vapor or inorganic mercury 

compounds, species differences in vulner-
ability complicated the evaluation, and only 
recently did the common marmoset emerge as 
the best laboratory model of human methyl-
mercury neurotoxicity (Eto et al. 2002).

An important new insight emerged when 
delayed effects of developmental neuro-
toxicity were reported in experimental ani-
mals in 1972. The key finding was that rats 
exposed during early development showed 
adverse effects that at first were not appar-
ent, but later on became obvious as deranged 
behavior in the mature animals (Spyker et al. 
1972). For the first time these experimen-
tal results confirmed the increased sensitivity 
of the brain during development, in sup-
port of the Swedish report 20 years earlier 
(Engleson and Herner 1952) as well as the 
Minamata evidence. However, at a federal 
court hearing in the United States, the first 
author of the Spyker et al. (1972) study testi-
fied and presented a movie showing abnor-
mal behavior in prenatally exposed offspring 
that had first appeared perfectly normal; the 
judge expressed surprise that disabilities in 
mice had anything to do with human beings 
and questioned whether the abnormalities 
could constitute a reason to regulate mercury 
(Cranmer J, personal communication).

More recent toxicological studies have 
aimed at identifying toxic mechanisms and 
vulnerable time windows especially in relation 
to brain development (Clarkson and Magos 
2006). Since 1980, when the term “methyl-
mercury compounds” was introduced as a 
medical subject heading, the U.S. National 
Library of Medicine has listed > 1,000 pub-
lications on experimental toxicology of this 
substance. At present, methyl mercury is one 
of the environmental pollutants with the most 
extensive toxicology documentation.

Wildlife Poisonings
At Minamata, marine organisms such as 
octopi and sea bass were found floating near 
the shore starting around 1950, and dying 
fish could be scooped up by hand. Crows 
were reported to be becoming sick and dying 
in the area. By 1953, cats were frequently 
dying from cramps with a condition dubbed 
“dancing disease.” Kitamura et al. (1957) 
reported that 50 of 61 cats bred by families 
of Minamata disease patients died in 1953–
1956. By the mid-1950s, the reports of toxic 
effects on marine life began to extend to 
nearby coasts.

At the time when methyl mercury poison-
ing occurred among Japanese fishing popula-
tions, the same substance was being widely 
applied for seed dressing in Sweden and other 
countries. Along with pollution from the 
paper industry and chloralkali plants, these 
processes caused environmental accumulation 
of methyl mercury in food chains.

Predatory and seed-eating birds started to 
develop overt poisoning, and ornithologists 
became alarmed (Landell 1968). When the 
cause of the problem was eventually realized, 
sea eagles and other bird populations were seri-
ously threatened by widespread environmental 
mercury contamination. Representatives from 
agriculture insisted that mercury treatment of 
seeds could not be discontinued without seri-
ous financial losses and that detailed research 
would be needed to document the extent 
to which mercury might be dispersed in the 
environment and contribute to bird mortality 
(Landell 1968).

In the early 1960s, the concern about 
mercury toxicity inspired some screening 
efforts for mercury concentrations in foods 
and environmental samples by neutron acti-
vation analysis. When mercury speciation 
became possible, biomagnification of methyl-
mercury was documented, with increasing 
concentrations in aquatic food chains. The 
highest levels were present in predatory fish 
and fish-eating birds (ospreys and sea eagles), 
which also exhibited numerous cases of poi-
soning and reproductive failure (Borg 1969).

A turn in the debate occurred in 1964, 
when unused seed grain treated with methyl-
mercury had been used as chicken feed in 
Sweden (Tejning and Vesterberg 1964). In 
a small study of two hens and a total of six 
eggs laid by these hens, a high mercury con-
tent of 5 mg/kg was found in one of the eggs. 
This report spurred a ban in several coun-
tries against the import of Swedish eggs. The 
issue of methyl mercury transmission in food 
chains suddenly became highly relevant both 
to human health and commerce and therefore 
attracted regulatory attention.

Environmental Mercury 
Methylation
It came as a major surprise that methyl-
mercury can be formed from inorganic salts 
in the environment, as demonstrated by the 
simple experiment conducted by Swedish 
researchers (Jensen and Jernelov 1967), who 
showed that inorganic mercury could be con-
verted into methyl mercury in sediment from 
a home aquarium. After auto claving the sedi-
ment, no methyl mercury was formed, thus 
suggesting that micro organisms played a role 
(Jensen and Jernelov 1967). Extended studies 
documented the concentration dependence 
as well as the generation of volatile dimethyl-
mercury (Jensen and Jernelov 1969), and 
other research showed that methyl cobalamin 
(vitamin B12) could transfer a methyl group 
to the mercuric ion non enzymatically (Wood 
et al. 1968). These methylation processes were 
probably of little significance in Minamata 
and Niigata, where methyl mercury was 
formed in the acetaldehyde plants as part of 
the catalyst reactions. However, methylation 
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of mercury from all sources causes world wide 
contamination of freshwater fish and seafood 
by methyl mercury.

The widespread use of methyl mercury 
for seed dressing, along with other mercury 
sources such as fungicides used in paper mills, 
have added to the pollution of waterways and 
coastal waters. Many rivers and lakes became 
so polluted with mercury that fish advisories 
against eating sport fish were issued, especially 
in countries such as Canada, Sweden, and the 
United States [U.S. Environmental Protection 
Agency (EPA) 2009]. Studies in North 
America verified that biomagnification took 
place, especially near paper mills and chloral-
kali plants, once again with the highest con-
centrations in top carnivores (Fimreite 1974). 
Although methyl mercury contamination of 
fish had been thought to constitute a local 
problem in Japan, it now appeared to occur 
worldwide, with serious ecological effects and 
dangerous human exposures.

Mercury releases into the aquatic environ-
ment could also come from air pollution, for 
example, from municipal incinerators and 
power plants burning coal that contains  
mercury. The deposition of mercury from the 
air is now known to become rapidly available 
for methylation and uptake in fish (Harris 
et al. 2007).

Today, thousands of lakes and rivers 
worldwide are seriously polluted with methyl-
mercury. The extent of the problem is illus-
trated by fish advisories in the United States. 
The U.S. EPA maintains a registry of warnings 
on fish contamination, where advice is pro-
vided about the safety of eating local fish (U.S. 
EPA 2009). The total number of advisories for 
mercury has been increasing and, by 2008, it 
exceeded 4,000. More than 80% of all adviso-
ries have been issued, at least in part, because 
of mercury; they affected > 16 million lake 
acres and > 1.3 million river miles in 2008 
(U.S. EPA 2009).

Although mercury has been thought to be 
a natural component in the biosphere, com-
pilation of mercury analyses from tissues of 
Arctic indicator species shows that current-
day levels are increased by a factor of about 
10 above those present in pre industrial times 
(Dietz et al. 2009).

Regulatory Decisions
After the use of mercury fungicides in agri-
culture had been banned in 1966 in Sweden, 
a similar ban was instituted in 1970 in the 
United States, spurred by media reports that 
mercury-treated grain had been used by a 
New Mexico farmer to feed his hogs, and 
that contaminated pork from the farm had 
entered the market (Davis et al. 1994; D’Itri 
and D’Itri 1978). 

The first safety evaluation of methyl-
mercury in fish took place in Sweden in 1968 

and relied on the Japanese data (Landell 
1968). Seafood from Japan was thought to 
contain an average methyl mercury concentra-
tion of 50 μg/g (measured as mercury). The 
Swedish experts at the National Institute of 
Public Health then figured in a safety factor 
of 10 and another one of 5 to arrive at a safe 
mercury limit of 1 μg/g for all seafood (Landell 
1968). However, some confusion occurred, 
because the original Japanese data turned out 
to be based on dry weight concentrations but 
the Swedish monitoring data used wet weights. 
Dry weight concentrations are up to five times 
higher than wet. The calculated limit then 
should logically apply to dry weight concen-
trations, or it should be decreased by 80% if 
applied to wet weight. The error was due to a 
missed footnote in an English-language report 
(Landell 1968). Further refinement was pub-
lished in a detailed risk assessment (Swedish 
National Institute of Public Health 1971). 
These experts recommended a safe limit for 
dietary exposure of 0.4 μg/kg body weight per 
day, corresponding to a hair mercury concen-
tration of about 6 μg/g. At that level, an adult 
weighing 70 kg could eat 200 g of fish per 
week at a mercury concentration of 1 μg/g.

The first international evaluation of 
methyl mercury toxicity (JECFA 1972) recom-
mended a provisional tolerable weekly intake 
of 200 μg (3.3 μg/kg body weight), that is, 
virtually the same as the limit proposed in 
Sweden, after allowing for the difference 
between daily and weekly intake. In a subse-
quent review, the International Programme 
on Chemical Safety (1990) concluded that, 
based on the data on developmental neuro-
toxicity from the main Iraqi incident, fetal 
neuro toxicity might occur when maternal hair 
mercury concentrations exceed 10–20 μg/g.

In Japan, mercury analyses of fish had 
already begun in the 1960s, but it was only 
in 1973 that systematic studies became feasi-
ble. A provisionally tolerable limit of 0.4 μg/g 
(as total mercury, and 0.3 μg/g as methyl-
mercury) was set by the Japanese Ministry 
of Health and Welfare for fish intended for 
human consumption (Endo et al. 2005). This 
limit remains in effect, although it does not 
apply to tuna, swordfish, and freshwater fish.

In the United States, a limit of 0.5 μg/g 
was already in use in 1970, when analyses 
of canned tuna revealed that the limit was 
exceeded (Mazur 2004). This finding led to a 
governmental recall of both tuna and sword-
fish. In 1985, the conundrum of methyl-
mercury accumulation in marine food chains 
was resolved by increasing the permissible 
limit to 1 μg/g for the relevant species. The 
previous recall of mercury-contaminated 
fish was therefore criticized as a “false alarm” 
(Mazur 2004).

Within the European Union, a common 
limit of 0.5 μg/g had been applied to fish in 

general since 1993, but a few species, such as 
tuna and swordfish, were allowed to contain 
up to 1 μg/g. This regulation proved prob-
lematic because member states reported mer-
cury concentrations exceeding the 0.5 μg/g 
limit in many other species. The European 
Commission therefore decided in 2001 to add 
all of these species to the list of those that had 
to comply with the 1 μg/g limit (European 
Commission 2001). This decision referred 
to the need for trans parency and the need to 
maintain mercury levels as low as reasonably 
achievable, while taking into account “physio-
logical reasons” that mercury concentrates in 
the tissues of certain species more easily than 
others. However, no assessment of the associ-
ated health risks was produced on this occa-
sion, and no advice was offered to the public.

Widening of Toxicity Risks
Research in the field of developmental neuro-
toxicity was highly inspired by the observation 
of dose-dependent effects of environ mental 
lead exposures (Needleman et al. 1979). 
Adverse effects from methyl mercury also 
seemed to occur as a continuum: the higher 
the dose, the more severe the illness. Some 
of the most highly exposed populations were 
indigenous groups. In Canada, a study of 
234 Cree children showed abnormal tendon 
reflexes associated with mercury concentra-
tions in maternal hair representing their expo-
sure during pregnancy (McKeown-Eyssen 
et al. 1983). These findings suggested that 
even slightly increased environmental expo-
sure to methyl mercury from fish could lead 
to adverse effects on nervous system develop-
ment, just like inorganic lead exposure.

In a cohort-based case–control study of 
children exposed to methyl mercury from 
marine food carried out in New Zealand, 
Kjellström et al. (1986, 1989) measured the 
mercury concentration in the mother’s hair 
during pregnancy and then examined the chil-
dren at various ages. They reported delayed 
brain development in children from mothers 
with hair mercury concentrations ≥ 6 μg/g. 
The results were published after peer review 
by the Swedish Environmental Protection 
Agency; however, the findings were at first 
ignored for formal reasons by other regula-
tory authorities because the report had not 
appeared in a peer-reviewed scientific jour-
nal—although it was eventually published in 
one after additional statistical analyses were 
conducted (Crump et al. 1998).

Two large prospective studies were ini-
tiated in the mid-1980s. A study of 1,000 
children from the Faroe Islands concluded 
that low-level methyl mercury exposure during 
intra uterine development was associated with 
deficits in several brain functions in school-
age children and that significant associations 
were apparent well below a maternal hair 
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mercury concentration of 10 μg/g (Grandjean 
et al. 1997). In contrast, largely non positive 
findings were initially reported in chil-
dren from a similar study in the Seychelles 
(Myers et al. 2003). Although statistical 
analyses showed that the two studies were 
not in mutual disagreement because of wide 
confidence limits (Keiding et al. 2003), the 
apparent disagreement was perceived as a con-
troversy and fueled a debate on uncertainty 
(Grandjean 1999). Additional longitudinal 
data later appeared from Japan, Poland, and 
the United States in support of the Faroe 
Islands conclusions (Jedrychowski et al. 2006; 
Lederman et al. 2008; Murata et al. 2006; 
Oken et al. 2008). Although less weighty, sev-
eral cross-sectional studies also supported the 
existence of low-level exposure neuro toxicity 
(Grandjean et al. 2005).

The reasons for the apparent lack of mer-
cury effects in the Seychelles could be that 
beneficial nutrients in fish might obliterate 
or dampen the mercury toxicity (Clarkson 
and Strain 2003). In recent research from the 
Seychelles, Strain et al. (2008) reported that 
cognitive development in children was not 
associated with either maternal fish intake 
or methyl mercury exposure, when each was 
considered separately. If maternal fish intake 
and mercury were included in the statisti-
cal analysis at the same time, fish intake was 
clearly benefi cial, whereas mercury had nega-
tive effects. Also, in the Faroe Islands, the 
mercury toxicity became more prominent 
after adjustment for the beneficial effects of 
the mother’s fish intake during pregnancy 
(Budtz-Jorgensen et al. 2007).

Interpretation of Uncertainty
Because of the apparent disagreement between 
the two major studies and mercury’s public 
health implications, in 1998 the U.S. White 
House called for an international workshop 
with 30 invited experts, who were asked to 
critically examine the scientific evidence. 
These experts emphasized a variety of possible 
uncertainties and concluded that “there are 
inadequate data . . . to draw meaningful con-
clusions at this time” (National Toxicology 
Program 1998). Despite the possibility that 
sub clinical toxicity could be easily missed and 
under estimated, the workshop experts were 
quite optimistic: 

Measurement error can impact significantly on 
both the estimated levels of effect and the deci-
sion on the level of exposure at which an effect is 
detected because of the potential for misclassifica-
tion. However, the data presented in the work-
shop suggest that the precision of measurements of 
methyl mercury in hair or cord blood is very good. 
(National Toxicology Program 1998)

The experts recommended further research.
At the request of the U.S. Congress, a 

new expert panel was then convened by the 

National Research Council (NRC) to deter-
mine whether an exposure limit of 0.1 μg/kg  
body weight per day was appropriate, as pro-
posed by the U.S. EPA on the basis of the Iraq 
data on adverse effects in children after mater-
nal methyl mercury exposure during pregnancy 
(NRC 2000). The committee supported the 
U.S. EPA limit but recommended that it 
should be based on the data from the Faroe 
Islands study. In addition, dose–response data 
from all three studies (Faroes, New Zealand, 
Seychelles) combined were in accordance with 
the Faroes findings.

A few years later, JECFA (2003) recon-
sidered its original evaluation from 1972. The 
experts decided to exclude the New Zealand 
data from consideration and settled on a 
weekly intake limit of 1.6 μg/kg body weight. 
In reaching this conclusion, the health bene fits 
of seafood diets were emphasized, along with 
the need to prevent consumers from being 
afraid to eat fish because of mercury contami-
nation. The JECFA experts (JECFA 2003) 
therefore chose a smaller uncertainty factor 
than did the NRC committee (NRC 2000). 
Not wanting to take sides in a discussion on 
key studies and safety factors, the European 
Food Safety Authority (2004) recognized both 
exposure limits and concluded that exposure 
to this food contaminant “should be mini-
mised.” In the United States, federal agencies 
currently use different exposure limits when 
dealing with safe human methyl mercury expo-
sures from commercially traded fish, fish con-
taminated from toxic waste, and fish caught 
by sport fishers (Grandjean 1999). Each limit 
is supported by a risk assessment that relies on 
virtually the same evidence.

Because of the beneficial nutrient contents 
of seafood, two seafood dinners per week are 
generally recommended as part of a varied 
diet. A total weekly seafood intake includ-
ing two fish dinners would represent about 
500 g of seafood. The U.S. EPA limit sug-
gests that an adult (weight, 70 kg) should not 
exceed a mercury intake of 0.1 μg × 7 days 
× 70 kg body weight, or about 50 μg (U.S. 
EPA 2001). Therefore, the seafood should 
contain an average mercury concentration of 
≤ 0.1 μg/g. However, current regulations in 
the United States and the European Union 
allow up to 10 times as much.

A more accurate risk calculation would 
need to take into account the masking effects 
of essential nutrients that promote brain 
development (Budtz-Jorgensen et al. 2007). 
Further, the above risk assessments did not 
take into account the consequences of impre-
cision in exposure assessments and the impli-
cations of misclassification (Budtz-Jorgensen 
et al. 2003, 2004). Standard statistical analy-
ses assume that exposure biomarkers are 
meas ured without error, which is not possible 
because they are merely proxy indicators of 

the true dose to the brain. Statistically, any 
random error will cause an under estimation 
of the true effect. However, the total impre-
cision of the cord-blood analysis was much 
greater than suggested by the laboratory qual-
ity control, and the hair mercury analy sis was 
even more imprecise (Budtz-Jorgensen et al. 
2004). Dose–response relationships based on 
the hair mercury concentration therefore sig-
nificantly under estimated the true mercury 
effect. Accordingly, the benchmark dose level 
decreased by about 50% after adjustment for 
the imprecise exposure data (Budtz-Jorgensen 
et al. 2004). Thus, the exposure limits esti-
mated by the U.S. EPA and JECFA would 
need to be halved. Additional imprecision 
may occur from using non specific outcome 
variables that are affected by other factors.

Sophisticated techniques, such as neuro-
physiological detection of delayed electri-
cal transmission in the brain, have shown 
adverse effects at very low mercury exposure 
levels (Figure 1) (Murata et al. 2004). Data 
seem to indicate that there may not be an 
actual threshold for methyl mercury toxicity, 
although the exact cognitive implications of 
slightly delayed electrical signals in the brain 
are unclear at this point in time.

The combined evidence led the UNEP to 
initiate a global assessment project for mer-
cury, and an international agreement on mer-
cury pollution abatement was approved by the 
member states in 2009 (UNEP 2009). The 
European Union and the United States have 
already decided on a ban on mercury exports, 
and mercury is being phased out in thermom-
eters and scientific instruments (European 
Union 2007). The time scale in Table 1 sug-
gests that all of these preventive measures fol-
lowed at a substantial delay after the discovery 
of environmental health problems, partially 
because of disagreement about the impact of 
uncertainties.

Lessons for Environmental 
Health Research
The first observed cases of methyl mercury poi-
soning, almost 150 years ago, occurred from 
incautious experimental practices, and many 
subsequent poisonings in workers were due to 
methyl mercury inadvertently formed during 
production processes. However, these early 
discoveries of the toxicity of methyl mercury 
and its formation during chemical production 
were subsequently forgotten or disregarded, 
thereby causing delays in knowledge building 
and prevention.

The failure to recognize the distinctive 
clinical features of serious methyl mercury poi-
soning in adults delayed the identification of 
the etiology of Minamata disease and thus 
recognition of the full extent of the outbreak. 
Even when methyl mercury had been estab-
lished as the chemical cause of the disease, 
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strict diagnostic requirements and case defini-
tions assumed that the disease was a charac-
teris tic all-or-none phenomenon, thereby 
excluding less distinctive cases and obscuring 
the dose–effect relationship.

The first likely cases of developmental 
methyl mercury poisoning were described in 
1952 (Engleson and Herner 1952) and sub-
sequently reported from Minamata (Harada 
2004; Social Scientific Study Group on 
Minamata Disease 1999); replication in labo-
ratory animals was published in 1972 (Spyker 
et al. 1972), and the first prospective popula-
tion study of prenatal methyl mercury toxicity 
due to contaminated seafood in humans was 
published in 1986 (Kjellström et al. 1986). 
However, scientific consensus on prena-
tal vulnerability was hampered by focusing 
on uncertainties in the evidence, and inter-
national agreement on the need for protection 
against prenatal exposures was reached only 
in 2003.

Environmental methylation of mercury in 
sediment was discovered accidentally because 
systematic studies of the environ mental fate 
of mercury were not conducted and because 
initial studies focused only on the total mer-
cury concentration. Recognition of food 
chain contamination and environmental bio-
accumulation of methyl mercury was therefore 
delayed.

A key experiment showing that cats 
developed the characteristic disease when fed 
effluent water from a polluting factory was 
suppressed by the sponsoring company, and 
the detailed results became available only after 

a delay of 40 years (Eto et al. 2001). Industry 
representatives advanced alternative explana-
tions and used the early diversity of scientific 
opinions for its legal argument that toxicity was 
not the responsibility of industry, nor could it 
have been anticipated, thereby causing a sub-
stantial delay of remediation, compensation, 
and prevention.

After the publication of new data on 
adverse effects of low-level exposures to 
methyl mercury, regulatory agencies requested 
scientific scrutiny. Expert committees empha-
sized uncertainties and weaknesses in the 
available data. Less attention was paid to the 
question of what could have been known, 
given the research methods and possibilities, 
and whether developmental neuro toxicity at 
low methyl mercury doses could be ruled out. 
The reports also generally ignored that meas-
urement imprecision most likely resulted 
in an underestimation of the true effects. 
Instead, more research was recom mended. 
The insistence on solid evidence promoted 
by polluters and regulatory agencies there-
fore agreed with a desire among research-
ers to expand scientific activities in this area. 
However, the wish to obtain more complete 
proof had the untoward effect of delaying 
corrective action.

Although Jun Ui’s critique (D’Itri and 
D’Itri 1978), given in the introduction of 
this review, referred to Japanese regulatory 
agencies themselves being afflicted by signs 
of methyl mercury poisoning, here we suggest 
that environmental health research, too, has 
suffered tunnel vision, forgetfulness, lack of 

coordination, and some of the other symp-
toms noted in poisoning cases. Like methyl-
mercury poisoning itself, such abnormalities 
deserve preventative action.
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